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Overview

● Numpy basics and gotcha
● Randomness
● Pseudorandom Number Generators
● Numpy PRNG functions

○ Using PRNGs to estimate values (Monte Carlo)
● Probability Distributions

○ Estimating outcomes by sampling from distributions
● Optimisation

○ Grid-search vs Random-search
● Simulation

○ Calculating p-values by simulating Null distribution
○ Bootstrapping to estimate confidence intervals



Numpy
NumPy (Numerical Python): numerical/array library that forms basis of 
most of scientific python

Core ndarray object that supports arrays with arbitrary numbers of 
dimensions/axes. 

Operates similar to nested lists (index, slicing, nested dimensions) but 
with many special numerical methods.

Limitations for speed: elements only 1 type, semi-mutable (change 
values/shape but not number of entries), rectangular (i.e., each row must 
have same number of columns)

import numpy as np

np.zeros(3) # array([0., 0., 0.])

np.ones(2) # array([1.,1.])

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(a)

array([[1, 2, 3],

     [4, 5, 6],

   [7, 8, 9]])

a[0,1] # 2

a[:, 2] # array([2, 5, 8])

a.shape # (3, 3)

a.reshape(1, 9) # array([[1, 2, 3, 4, 5, 6, 7, 8, 
9]])

a.sum() # np.int64(45)https://numpy.org/doc/stable/user/absolute_beginners.html



Numpy/Pandas: Views vs Copies

● Space efficiency: NumPy tries to avoid making copies of data
● Many NumPy operations e.g., subset of an array create a VIEW 
● Like alias but to just a portion of the original array
● Changing a view will change part of the original array
● If want a COPY then make an explicit copy (slow): ndarray.copy
● As Pandas is built on numpy it often does the same thing (one of the 

main sources of “warnings” in Pandas).

a = np.array([1, 2, 3, 4, 5, 6])

a

array([1, 2, 3, 4, 5, 6])

b = a[3:]

b

array([4, 5, 6])

b[0] = 40

a

array([ 1,  2,  3, 40,  5,  6])

1
2
3

4 → 40
5
6

a

b



Randomness



Almost every area of science makes 
use of randomness:

Sampling: Random subset of group 
can be used to create a smaller 
unbiased representation of group

Optimisation: Efficiently sampling 
possible values to find “best” 
combination of parameters (e.g., 
model fitting)

Randomness is an essential tool in science

https://www.scribbr.com/methodology/random-assignment/, 
https://engineering.rappi.com/bayesian-optimization-how-to-calibrate-the-hyper-parameters-of-computing-expensive-models-c3ca54b39dbb,

https://www.scribbr.com/methodology/random-assignment/
https://engineering.rappi.com/bayesian-optimization-how-to-calibrate-the-hyper-parameters-of-computing-expensive-models-c3ca54b39dbb


Almost every area of science makes 
use of randomness:

Simulation: Model what different 
scenarios could look like to 
understand a system. 

Estimation: Calculate something 
you can’t directly measure through 
random sampling and simulation

(Many of these are actually the 
same thing!)

Randomness is an essential tool in science

Susceptible
Infected
Recovered
Herd Immunity

https://f1000research.com/articles/9-1198, https://www.geeksforgeeks.org/bootstrap-method/



● True random numbers only from random 
information (e.g., hardware random 
physical processes - secrets module)

● Usually “pseudorandom” numbers using 
pseudorandom number generators 
(PRNGs).

● PRNGs DETERMINISTICALLY 
generate a series of random-appearing 
numbers based on a seed parameter

● Statistical tests to work out if random 
enough

● Linear Congruential Generator (LCG) 
one of simpler methods but has issues

● Numpy uses a Permutation Congruential 
Generator which does an additional 
permutation step

(Pseudo)random Number Generation
def lcg_prng(seed, size):

state = seed

multiplier = 6364136223846793005 # big prime numbers

increment = 1442695040888963407 # big prime numbers

modulo = 2 ** 64 # normalise to integer

for i in range(size): # incrementally update seed/state

state = (multiplier * state + increment) % modulo

yield state

list(lcg_prng(42,2)) #[10481999410520546993,4159066171780167020]

list(lcg_prng(42,2)) #[10481999410520546993,4159066171780167020]

list(lcg_prng(10,2)) #[9743825058228238609,3298011952073619532]

list(lcg_prng(10,4)) # [9743825058228238609,3298011952073619532, 
658254279741938347,4015636148853147230]



Reproducible research = setting a random seed

● For reproducibility: explicitly set this 
random seed (or python will choose a true 
random number as seed).

● random:
○ Built-in but relatively slow
○ Seed set: random.seed

● np.random
○ fast, optimised, numerical library 
○ np.random.default_rng(seed)
○ np.random.seed(seed) # 

deprecated



Numpy random PRNG functions

Create a PRGN generator with a specific seed 
(ideal: big positive integer, practice: 42…).

Could implement choice with integers

Random can be scaled to arbitrary ranges:

(high-low) * random(0 to 1) + low

rng.uniform(low=3.0, high=7.0, size=2)

array([5.57546048, 6.29104645])

rng.random(size=2) # ==uniform: 0-1.0

array([0.37079802, 0.92676499])

(7-3) * rng.random(size=2) + 3 # scaling

array([5.21833915, 3.25526902]) #3->7

a = np.arange(4) # array([0,1,2,3])
rng.shuffle(a)
a
array([2, 3, 0, 1])

rng = np.random.default_rng(42)

rng.integers(low=0, high=8, size=3)

array([6, 2, 7])

rng.choice(['A', 'B', 'C'])

‘B’



Estimating hard to measure values with 
random numbers



● Odds of winning roulette always 
playing red?

● Analytical probability calculation:
○ p(win|red) = red_slots / all_slots
○ p(win|red) = 18 / (18 * 2 + 2)
○ p(win|red) =  0.473

● What if the roulette wheel was hidden? 
● What if you didn’t know the rules of 

how to calculate probability directly?
● Alternative: just play red a lot and see 

how often you win or lose.
● More times you play the better an 

estimate of the true p(win|red)
● Developed formally by Stanislaw Ulam 

for the Manhattan Project

Monte Carlo Estimation/Simulation



Estimating π with random samples
area of circle / total area = π/4

area ~= number of random samples inside

π = (points inside / total points) * 4

More samples = more accurate estimate

def estimate_pi(num_points, rng): 

# Generate random points in a 2x2 square centered at origin 

points = rng.uniform(-1, 1, (num_points, 2))

 # Calculate distance from origin for each point 

distances = np.sum(points**2, axis=1) 

# Count points inside the unit circle (distance < 1) 

inside_circle = np.sum(distances <= 1) 

# Pi estimate: (points in circle / total points) * 4 

pi_estimate = (inside_circle / num_points) * 4 

return pi_estimate 

estimate_pi(1, rng) # 4.0

estimate_pi(250, rng) # 3.152

estimate_pi(1_000_000, rng) # 3.142028



Sampling from probability distributions



Random Variable: A variable whose value is 
determined by a random process. It can be:

● Discrete: Can only take specific values (like 
the number of heads in coin tosses) - 

● Continuous: Can take any value within a 
range (like height or temperature)

Probability Mass Function (PMF): For discrete 
random variables, assigns probabilities to each 
possible value.

Probability Density Function (PDF): For 
continuous random variables, describes the relative 
likelihood of different values.

Cumulative Distribution Function (CDF): Gives 
the probability that a random variable is less than or 
equal to a certain value.

Probability Distributions



Sampling from specific distributions
• Normal/Gaussian: sum of random variables tends to 
normal (central limit theorem), stay normal after many 
operations

• Binomial: binary successes of independent trials

rng = np.random.default_rng(42)

rng.normal(loc=10, scale=4, size=3)

array([11.21886832,  5.84006358, 13.00180478]

rng.binomial(n=100, p=0.5) # 51

rng.binomial(n=100, p=0.5) # 56

rng.binomial(n=100, p=0.5) # 48



Sampling from specific distributions

• Poisson: events occurring in a fixed interval

• Exponential: time between events

rng = np.random.default_rng(42)

rng.poisson(lam=4, size=3) #array([7, 3, 0])

rng.poisson(lam=4, size=3) # array([6, 4, 4])

rng.exponential(scale=2, size=4)

array([1.91320557, 1.24276617, 3.01592275, 4.05600316])

rng.exponential(scale=2, size=4)

array([0.66413763, 0.09950144, 1.84964447, 5.1068388 ])



np.random has ~36 built-in 
distributions

scipy.stats has > 120 

Fun less-common distributions:

Cauchy - ratio of 2 normal 
random variables and has no 
mean or variance

Gumbel - used to calculate the 
probability of maximum values 
of random draws from other 
distributions

Many distributions! 



Understanding outcomes by sampling from a distribution

Let’s say we developed a vaccine

Clinical Trial showed that the vaccine prevented 
70% of people exposed from getting infected.

If we gave this vaccine to 1000 people in the 
community and they were each exposed to the 
disease:

● How many of them would we expect to be 
protected? 

● How variable would this be?

Can calculate this by randomly sampling from a 
binomial distribution!

vaccine_protection = 0.7  # 70%

num_people = 1000  # Population size

num_simulations = 50  # Number of times to run the experiment

protected_counts = rng.binomial(n=num_people, 

     p=vaccine_effectiveness,

     size=num_simulations)

median_protected = np.median(protected_counts)

std_protected = np.std(protected_counts)

print(f”{median_protected} +/- {std_protected}”)

693.5 +/- 16.569



Optimisation



Optimising functions is common in science & engineering

Scientific problems often involve finding the 
most efficient path, optimal configuration, or 
best parameters:

● Reducing drag in the design of a new 
boat propellor

● Finding the best evolutionary tree to 
explain DNA data

● Working out how to allocate vaccines 
to maximum effect 

Optimisation without randomness means 
you can get stuck in local maxima/minima!



Functional optimisation

Problem: finding x and y with that maximise the 
value of a function (often unobservable directly)

def multi_peak_function(x, y):

    peak1 = 3 * np.exp(-0.2 * ((x - 2)**2 + (y - 2)**2))

    peak2 = 2 * np.exp(-0.3 * ((x + 2)**2 + (y + 2)**2))

    peak3 = 1.8 * np.exp(-0.5 * ((x - 2)**2 + (y + 1)**2))

    peak4 = 1.5 * np.exp(-0.5 * ((x + 1)**2 + (y - 3)**2))

    peak5 = 1.2 * np.exp(-0.7 * ((x - 0)**2 + (y - 0)**2))

    # Combine all peaks

    return peak1 + peak2 + peak3 + peak4 + peak5



Grid-Search
Problem: finding x and y with that maximise the value of a 
function (often unobservable directly)

Solution 1: try every possible x and y

- Infinite number of possibilities

Solution 2: systematically search x and y

- Many combinations but should be close

num_points = 25

x_grid = np.linspace(-5, 5, num_points)

y_grid = np.linspace(-5, 5, num_points)

max_value = float('-inf')

max_coords = (0, 0)

all_points = []

# Evaluate function at each grid point

for x in x_grid:

for y in y_grid:

            z = multi_peak_function(x, y)

            all_points.append((x, y, z))

            if z > max_value:

                max_value, max_coords = z, (x, y)

all_points.sort(key=lambda point: point[2], reverse=True)

print(all_points[0])

(2.0833, 2.0833) = 3.0185



Random Search
Problem: finding x and y with that maximise the value of a 
function (often unobservable directly)

Solution 3: randomly try a number of possible values

- Much more efficient exploration of possible parameter 
space

- Not guaranteed to find optimal value

num_points = 200

x_random = np.random.uniform(-5, 5, num_points)

y_random = np.random.uniform(-5, 5, num_points)

Max_value, max_coords, all_points = float('-inf'), (0,0), []

# Evaluate function at each random point

for i in range(num_points):

x, y = x_random[i], y_random[i]

z = multi_peak_function(x, y)

       all_points.append((x, y, z))

       if z > max_value:

            max_value = z

            max_coords = (x, y)

all_points.sort(key=lambda point: point[2], reverse=True)

print(all_points[0])

(2.03, 2.04) = 3.0299



Simulation



Detecting the Higgs Boson with simulations!

● Smashing bundles of protons together 
creates many different decay paths.

● CMS/Atlas Detectors can detect signals 
related to different decays

● How do you know when you’ve detected the 
signal of the Higgs Boson?

● Simulate every possible decay path and 
combination of decay paths with and without 
Higgs Boson predicted signal

● Compare simulated data to collected data!



Simulations as key part of frequentist 
statistics



Evaluating if treatments work

You’re an alpaca shepherd and want to work out if a 
new shampoos increases the wool quality of your 
alpaca.

Our experiment will have the following hypotheses:

Η0: μtreatment <= μcontrol

Null: shampoo doesn’t change average wool quality.

ΗA: μtreatment > μcontrol

Alternative: new shampoo yields superior wool quality

https://www.jwilber.me/permutationtest/



Evaluating if treatments work
We can randomly assign our alpacas to:

● Treatment group who gets the new shampoo
● Control group that keeps the old shampoo

Then we measure the wool quality in each alpaca and 
calculate the average for each group.

We can then calculate the difference in mean wool 
quality for each group to give us a test statistic:

Test Statistic = μTreatment - μControl

Test Statistic = 1.6

https://www.jwilber.me/permutationtest/

treat = np.array([4.8, 7.2, 6.2, …])
control = np.array([5.4, 4.4, 5.1, … ])

test_stat = np.mean(treat) - np.mean(control)

Treatment          Control



Determining whether a test statistic is significant

Need to know what the DISTRIBUTION 
of test statistics would look like if null 
were true

Can estimate this with simulation by 
shuffling the alpacas between groups 
and recalculating our test-statistic.

Shuffled test statistic = -0.5

Treatment          Control



Determining whether a test statistic is significant

Need to know what the DISTRIBUTION 
of test statistics would look like if null 
were true

Can estimate this with simulation by 
shuffling the alpacas between groups 
and recalculating our test-statistic.

Shuffled test statistic = -0.5

Repeat many times = test distribution

Treatment          Control



Determining whether a test statistic is significant

Need to know what the DISTRIBUTION of test 
statistics would look like if null were true

Can estimate this with simulation by shuffling 
the alpacas between groups and recalculating 
our test-statistic.

Shuffled test statistic = -0.5

Repeat many times = test distribution

n_permutations = 200

combined = np.concatenate([treat, control])

n1, n2 = len(treat), len(control)

observed_diff = np.mean(treat) - np.mean(control)

null_distribution = np.zeros(n_permutations)

for i in range(n_permutations):

np.random.shuffle(combined)

new_treat = combined[:n1]

new_control = combined[n1:n1+n2]

null_distribution[i] = np.mean(new_tream) - np.mean(control)



Compare observed test statistics to null test-distribution
p-value is just the proportion of permutations where the sampled difference was greater than or equal to 
the difference we observed in our original treatment and control groups. 

If we did 200 permutations and 16 had a difference >= to our observed test statistic

p-value = 16 / 200 = 0.08 or 8%

p_value = np.mean(np.abs(null_distribution) >= np.abs(test_statistic)



Frequent statistics really just boils down to this procedure!

You can memorise rules/common practices to do this analytically or more efficiently but essentially you are 
always comparing a test statistics to the distribution of that statistic under a null 



Calculating confidence intervals by random re-sampling

Let’s say we are measuring the average growth in a 
set of 15 plants.

Can calculate the mean easily but how do we know 
what the plausible range of values would be.

A confidence interval gives a range of plausible 
values for an unknown population parameter (like a 
mean, proportion, or median) 

Definition: a 95% confidence interval of [10.2, 12.8] 
means if you were to repeat your sampling process 
many times ~95% of the resulting intervals would 
contain the true population parameter.

# We’ll make up some data but in the real-world we’d 

measure this in an experiment.

n_plants = 15

true_mean_growth = 3.25

growth_data = rng.normal(loc=true_mean_growth,

     scale=2.5, size=n_plants)

# Calculate the sample mean

sample_mean = np.mean(growth_data)



Bootstrapping: sampling original data with replacement

n_bootstrap = 1000

bootstrap_means = []

for _ in range(n_bootstrap):

    # Resample with replacement

    bootstrap_sample = np.random.choice(growth_data, 

size=len(growth_data), 

replace=True)

bootstrap_means.append(np.mean(bootstrap_sample))

bootstrap_means = np.array(bootstrap_means)



Bootstrapping: sampling original data with replacement

# Calculate 95% confidence interval

lower_ci = np.percentile(bootstrap_means, 2.5)

upper_ci = np.percentile(bootstrap_means, 97.5)



Summary

● Numpy basics and gotcha
● Randomness
● Pseudorandom Number Generators
● Numpy PRNG functions

○ Using PRNGs to estimate values (Monte Carlo)
● Probability Distributions

○ Estimating outcomes by sampling from distributions
● Optimisation

○ Grid-search vs Random-search
● Simulation

○ Calculating p-values by simulating Null distribution
○ Bootstrapping to estimate confidence intervals


