
CSCI2202: Lecture 9
Randomness and Probability

Finlay Maguire (finlay.maguire@dal.ca)
TA: Ehsan Baratnezhad (ethan.b@dal.ca)

TA: Precious Osadebamwen (precious.osadebamwen@dal.ca)

mailto:finlay.maguire@dal.ca
mailto:ethan.b@dal.ca
mailto:precious.osadebamwen@dal.ca

Overview

● Numpy basics and gotcha
● Randomness
● Pseudorandom Number Generators
● Numpy PRNG functions

○ Using PRNGs to estimate values (Monte Carlo)
● Probability Distributions

○ Estimating outcomes by sampling from distributions
● Optimisation

○ Grid-search vs Random-search
● Simulation

○ Calculating p-values by simulating Null distribution
○ Bootstrapping to estimate confidence intervals

Numpy
NumPy (Numerical Python): numerical/array library that forms basis of
most of scientific python

Core ndarray object that supports arrays with arbitrary numbers of
dimensions/axes.

Operates similar to nested lists (index, slicing, nested dimensions) but
with many special numerical methods.

Limitations for speed: elements only 1 type, semi-mutable (change
values/shape but not number of entries), rectangular (i.e., each row must
have same number of columns)

import numpy as np

np.zeros(3) # array([0., 0., 0.])

np.ones(2) # array([1.,1.])

a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(a)

array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

a[0,1] # 2

a[:, 2] # array([2, 5, 8])

a.shape # (3, 3)

a.reshape(1, 9) # array([[1, 2, 3, 4, 5, 6, 7, 8,
9]])

a.sum() # np.int64(45)https://numpy.org/doc/stable/user/absolute_beginners.html

Numpy/Pandas: Views vs Copies

● Space efficiency: NumPy tries to avoid making copies of data
● Many NumPy operations e.g., subset of an array create a VIEW
● Like alias but to just a portion of the original array
● Changing a view will change part of the original array
● If want a COPY then make an explicit copy (slow): ndarray.copy
● As Pandas is built on numpy it often does the same thing (one of the

main sources of “warnings” in Pandas).

a = np.array([1, 2, 3, 4, 5, 6])

a

array([1, 2, 3, 4, 5, 6])

b = a[3:]

b

array([4, 5, 6])

b[0] = 40

a

array([1, 2, 3, 40, 5, 6])

1
2
3

4 → 40
5
6

a

b

Randomness

Almost every area of science makes
use of randomness:

Sampling: Random subset of group
can be used to create a smaller
unbiased representation of group

Optimisation: Efficiently sampling
possible values to find “best”
combination of parameters (e.g.,
model fitting)

Randomness is an essential tool in science

https://www.scribbr.com/methodology/random-assignment/,
https://engineering.rappi.com/bayesian-optimization-how-to-calibrate-the-hyper-parameters-of-computing-expensive-models-c3ca54b39dbb,

https://www.scribbr.com/methodology/random-assignment/
https://engineering.rappi.com/bayesian-optimization-how-to-calibrate-the-hyper-parameters-of-computing-expensive-models-c3ca54b39dbb

Almost every area of science makes
use of randomness:

Simulation: Model what different
scenarios could look like to
understand a system.

Estimation: Calculate something
you can’t directly measure through
random sampling and simulation

(Many of these are actually the
same thing!)

Randomness is an essential tool in science

Susceptible
Infected
Recovered
Herd Immunity

https://f1000research.com/articles/9-1198, https://www.geeksforgeeks.org/bootstrap-method/

● True random numbers only from random
information (e.g., hardware random
physical processes - secrets module)

● Usually “pseudorandom” numbers using
pseudorandom number generators
(PRNGs).

● PRNGs DETERMINISTICALLY
generate a series of random-appearing
numbers based on a seed parameter

● Statistical tests to work out if random
enough

● Linear Congruential Generator (LCG)
one of simpler methods but has issues

● Numpy uses a Permutation Congruential
Generator which does an additional
permutation step

(Pseudo)random Number Generation
def lcg_prng(seed, size):

state = seed

multiplier = 6364136223846793005 # big prime numbers

increment = 1442695040888963407 # big prime numbers

modulo = 2 ** 64 # normalise to integer

for i in range(size): # incrementally update seed/state

state = (multiplier * state + increment) % modulo

yield state

list(lcg_prng(42,2)) #[10481999410520546993,4159066171780167020]

list(lcg_prng(42,2)) #[10481999410520546993,4159066171780167020]

list(lcg_prng(10,2)) #[9743825058228238609,3298011952073619532]

list(lcg_prng(10,4)) # [9743825058228238609,3298011952073619532,
658254279741938347,4015636148853147230]

Reproducible research = setting a random seed

● For reproducibility: explicitly set this
random seed (or python will choose a true
random number as seed).

● random:
○ Built-in but relatively slow
○ Seed set: random.seed

● np.random
○ fast, optimised, numerical library
○ np.random.default_rng(seed)
○ np.random.seed(seed) #

deprecated

Numpy random PRNG functions

Create a PRGN generator with a specific seed
(ideal: big positive integer, practice: 42…).

Could implement choice with integers

Random can be scaled to arbitrary ranges:

(high-low) * random(0 to 1) + low

rng.uniform(low=3.0, high=7.0, size=2)

array([5.57546048, 6.29104645])

rng.random(size=2) # ==uniform: 0-1.0

array([0.37079802, 0.92676499])

(7-3) * rng.random(size=2) + 3 # scaling

array([5.21833915, 3.25526902]) #3->7

a = np.arange(4) # array([0,1,2,3])
rng.shuffle(a)
a
array([2, 3, 0, 1])

rng = np.random.default_rng(42)

rng.integers(low=0, high=8, size=3)

array([6, 2, 7])

rng.choice(['A', 'B', 'C'])

‘B’

Estimating hard to measure values with
random numbers

● Odds of winning roulette always
playing red?

● Analytical probability calculation:
○ p(win|red) = red_slots / all_slots
○ p(win|red) = 18 / (18 * 2 + 2)
○ p(win|red) = 0.473

● What if the roulette wheel was hidden?
● What if you didn’t know the rules of

how to calculate probability directly?
● Alternative: just play red a lot and see

how often you win or lose.
● More times you play the better an

estimate of the true p(win|red)
● Developed formally by Stanislaw Ulam

for the Manhattan Project

Monte Carlo Estimation/Simulation

Estimating π with random samples
area of circle / total area = π/4

area ~= number of random samples inside

π = (points inside / total points) * 4

More samples = more accurate estimate

def estimate_pi(num_points, rng):

Generate random points in a 2x2 square centered at origin

points = rng.uniform(-1, 1, (num_points, 2))

 # Calculate distance from origin for each point

distances = np.sum(points**2, axis=1)

Count points inside the unit circle (distance < 1)

inside_circle = np.sum(distances <= 1)

Pi estimate: (points in circle / total points) * 4

pi_estimate = (inside_circle / num_points) * 4

return pi_estimate

estimate_pi(1, rng) # 4.0

estimate_pi(250, rng) # 3.152

estimate_pi(1_000_000, rng) # 3.142028

Sampling from probability distributions

Random Variable: A variable whose value is
determined by a random process. It can be:

● Discrete: Can only take specific values (like
the number of heads in coin tosses) -

● Continuous: Can take any value within a
range (like height or temperature)

Probability Mass Function (PMF): For discrete
random variables, assigns probabilities to each
possible value.

Probability Density Function (PDF): For
continuous random variables, describes the relative
likelihood of different values.

Cumulative Distribution Function (CDF): Gives
the probability that a random variable is less than or
equal to a certain value.

Probability Distributions

Sampling from specific distributions
• Normal/Gaussian: sum of random variables tends to
normal (central limit theorem), stay normal after many
operations

• Binomial: binary successes of independent trials

rng = np.random.default_rng(42)

rng.normal(loc=10, scale=4, size=3)

array([11.21886832, 5.84006358, 13.00180478]

rng.binomial(n=100, p=0.5) # 51

rng.binomial(n=100, p=0.5) # 56

rng.binomial(n=100, p=0.5) # 48

Sampling from specific distributions

• Poisson: events occurring in a fixed interval

• Exponential: time between events

rng = np.random.default_rng(42)

rng.poisson(lam=4, size=3) #array([7, 3, 0])

rng.poisson(lam=4, size=3) # array([6, 4, 4])

rng.exponential(scale=2, size=4)

array([1.91320557, 1.24276617, 3.01592275, 4.05600316])

rng.exponential(scale=2, size=4)

array([0.66413763, 0.09950144, 1.84964447, 5.1068388])

np.random has ~36 built-in
distributions

scipy.stats has > 120

Fun less-common distributions:

Cauchy - ratio of 2 normal
random variables and has no
mean or variance

Gumbel - used to calculate the
probability of maximum values
of random draws from other
distributions

Many distributions!

Understanding outcomes by sampling from a distribution

Let’s say we developed a vaccine

Clinical Trial showed that the vaccine prevented
70% of people exposed from getting infected.

If we gave this vaccine to 1000 people in the
community and they were each exposed to the
disease:

● How many of them would we expect to be
protected?

● How variable would this be?

Can calculate this by randomly sampling from a
binomial distribution!

vaccine_protection = 0.7 # 70%

num_people = 1000 # Population size

num_simulations = 50 # Number of times to run the experiment

protected_counts = rng.binomial(n=num_people,

 p=vaccine_effectiveness,

 size=num_simulations)

median_protected = np.median(protected_counts)

std_protected = np.std(protected_counts)

print(f”{median_protected} +/- {std_protected}”)

693.5 +/- 16.569

Optimisation

Optimising functions is common in science & engineering

Scientific problems often involve finding the
most efficient path, optimal configuration, or
best parameters:

● Reducing drag in the design of a new
boat propellor

● Finding the best evolutionary tree to
explain DNA data

● Working out how to allocate vaccines
to maximum effect

Optimisation without randomness means
you can get stuck in local maxima/minima!

Functional optimisation

Problem: finding x and y with that maximise the
value of a function (often unobservable directly)

def multi_peak_function(x, y):

 peak1 = 3 * np.exp(-0.2 * ((x - 2)**2 + (y - 2)**2))

 peak2 = 2 * np.exp(-0.3 * ((x + 2)**2 + (y + 2)**2))

 peak3 = 1.8 * np.exp(-0.5 * ((x - 2)**2 + (y + 1)**2))

 peak4 = 1.5 * np.exp(-0.5 * ((x + 1)**2 + (y - 3)**2))

 peak5 = 1.2 * np.exp(-0.7 * ((x - 0)**2 + (y - 0)**2))

 # Combine all peaks

 return peak1 + peak2 + peak3 + peak4 + peak5

Grid-Search
Problem: finding x and y with that maximise the value of a
function (often unobservable directly)

Solution 1: try every possible x and y

- Infinite number of possibilities

Solution 2: systematically search x and y

- Many combinations but should be close

num_points = 25

x_grid = np.linspace(-5, 5, num_points)

y_grid = np.linspace(-5, 5, num_points)

max_value = float('-inf')

max_coords = (0, 0)

all_points = []

Evaluate function at each grid point

for x in x_grid:

for y in y_grid:

 z = multi_peak_function(x, y)

 all_points.append((x, y, z))

 if z > max_value:

 max_value, max_coords = z, (x, y)

all_points.sort(key=lambda point: point[2], reverse=True)

print(all_points[0])

(2.0833, 2.0833) = 3.0185

Random Search
Problem: finding x and y with that maximise the value of a
function (often unobservable directly)

Solution 3: randomly try a number of possible values

- Much more efficient exploration of possible parameter
space

- Not guaranteed to find optimal value

num_points = 200

x_random = np.random.uniform(-5, 5, num_points)

y_random = np.random.uniform(-5, 5, num_points)

Max_value, max_coords, all_points = float('-inf'), (0,0), []

Evaluate function at each random point

for i in range(num_points):

x, y = x_random[i], y_random[i]

z = multi_peak_function(x, y)

 all_points.append((x, y, z))

 if z > max_value:

 max_value = z

 max_coords = (x, y)

all_points.sort(key=lambda point: point[2], reverse=True)

print(all_points[0])

(2.03, 2.04) = 3.0299

Simulation

Detecting the Higgs Boson with simulations!

● Smashing bundles of protons together
creates many different decay paths.

● CMS/Atlas Detectors can detect signals
related to different decays

● How do you know when you’ve detected the
signal of the Higgs Boson?

● Simulate every possible decay path and
combination of decay paths with and without
Higgs Boson predicted signal

● Compare simulated data to collected data!

Simulations as key part of frequentist
statistics

Evaluating if treatments work

You’re an alpaca shepherd and want to work out if a
new shampoos increases the wool quality of your
alpaca.

Our experiment will have the following hypotheses:

Η0: μtreatment <= μcontrol

Null: shampoo doesn’t change average wool quality.

ΗA: μtreatment > μcontrol

Alternative: new shampoo yields superior wool quality

https://www.jwilber.me/permutationtest/

Evaluating if treatments work
We can randomly assign our alpacas to:

● Treatment group who gets the new shampoo
● Control group that keeps the old shampoo

Then we measure the wool quality in each alpaca and
calculate the average for each group.

We can then calculate the difference in mean wool
quality for each group to give us a test statistic:

Test Statistic = μTreatment - μControl

Test Statistic = 1.6

https://www.jwilber.me/permutationtest/

treat = np.array([4.8, 7.2, 6.2, …])
control = np.array([5.4, 4.4, 5.1, …])

test_stat = np.mean(treat) - np.mean(control)

Treatment Control

Determining whether a test statistic is significant

Need to know what the DISTRIBUTION
of test statistics would look like if null
were true

Can estimate this with simulation by
shuffling the alpacas between groups
and recalculating our test-statistic.

Shuffled test statistic = -0.5

Treatment Control

Determining whether a test statistic is significant

Need to know what the DISTRIBUTION
of test statistics would look like if null
were true

Can estimate this with simulation by
shuffling the alpacas between groups
and recalculating our test-statistic.

Shuffled test statistic = -0.5

Repeat many times = test distribution

Treatment Control

Determining whether a test statistic is significant

Need to know what the DISTRIBUTION of test
statistics would look like if null were true

Can estimate this with simulation by shuffling
the alpacas between groups and recalculating
our test-statistic.

Shuffled test statistic = -0.5

Repeat many times = test distribution

n_permutations = 200

combined = np.concatenate([treat, control])

n1, n2 = len(treat), len(control)

observed_diff = np.mean(treat) - np.mean(control)

null_distribution = np.zeros(n_permutations)

for i in range(n_permutations):

np.random.shuffle(combined)

new_treat = combined[:n1]

new_control = combined[n1:n1+n2]

null_distribution[i] = np.mean(new_tream) - np.mean(control)

Compare observed test statistics to null test-distribution
p-value is just the proportion of permutations where the sampled difference was greater than or equal to
the difference we observed in our original treatment and control groups.

If we did 200 permutations and 16 had a difference >= to our observed test statistic

p-value = 16 / 200 = 0.08 or 8%

p_value = np.mean(np.abs(null_distribution) >= np.abs(test_statistic)

Frequent statistics really just boils down to this procedure!

You can memorise rules/common practices to do this analytically or more efficiently but essentially you are
always comparing a test statistics to the distribution of that statistic under a null

Calculating confidence intervals by random re-sampling

Let’s say we are measuring the average growth in a
set of 15 plants.

Can calculate the mean easily but how do we know
what the plausible range of values would be.

A confidence interval gives a range of plausible
values for an unknown population parameter (like a
mean, proportion, or median)

Definition: a 95% confidence interval of [10.2, 12.8]
means if you were to repeat your sampling process
many times ~95% of the resulting intervals would
contain the true population parameter.

We’ll make up some data but in the real-world we’d

measure this in an experiment.

n_plants = 15

true_mean_growth = 3.25

growth_data = rng.normal(loc=true_mean_growth,

 scale=2.5, size=n_plants)

Calculate the sample mean

sample_mean = np.mean(growth_data)

Bootstrapping: sampling original data with replacement

n_bootstrap = 1000

bootstrap_means = []

for _ in range(n_bootstrap):

 # Resample with replacement

 bootstrap_sample = np.random.choice(growth_data,

size=len(growth_data),

replace=True)

bootstrap_means.append(np.mean(bootstrap_sample))

bootstrap_means = np.array(bootstrap_means)

Bootstrapping: sampling original data with replacement

Calculate 95% confidence interval

lower_ci = np.percentile(bootstrap_means, 2.5)

upper_ci = np.percentile(bootstrap_means, 97.5)

Summary

● Numpy basics and gotcha
● Randomness
● Pseudorandom Number Generators
● Numpy PRNG functions

○ Using PRNGs to estimate values (Monte Carlo)
● Probability Distributions

○ Estimating outcomes by sampling from distributions
● Optimisation

○ Grid-search vs Random-search
● Simulation

○ Calculating p-values by simulating Null distribution
○ Bootstrapping to estimate confidence intervals

